
1 
 

 
 
 
 
 

The Future of Families and Child Wellbeing Study 
Biomarker Appendage 

 

9- and 15-year Follow-Up Waves 

 

March 2023 
 
 
 
 
 
 
 
 

 
 
 
           
                                     
 

Funding for the FFCWS Biomarker data was provided through multiple awards from the National 

Institutes of Health. In addition to other FFCWS funding acknowledgements, when using the 

methylation data products please acknowledge R01 HD076592, R01 MH103761, R01HL149869, 

and R01 MD011716. When using only the telomere length data products please acknowledge 

R01 HD076592. 

Prepared by the staff at the Bendheim-Thoman Center for Research on Child Wellbeing (CRCW) 

and the Department of Molecular Biology, Princeton University and the Population, 

Neurodevelopment and Genetics Program, University of Michigan. For more information about 

the FFCWS, please visit our web site at https://ffcws.princeton.edu/ or email 

ffdata@princeton.edu.  

Bendheim-Thoman Center for Research 
on Child Wellbeing 
Wallace Hall 
Princeton University 
Princeton, NJ 08544 
http://crcw.princeton.edu 

Columbia Population Research Center 
1255 Amsterdam Avenue, Room 715 
Columbia University 
New York, NY10027 
http://cupop.columbia.edu 

Department of Molecular Biology 
Notterman Lab  
Lewis Thomas Lab 
Princeton University 
Princeton, NJ 08544 

Population, Neurodevelopment, and 
Genetics Program               
Institute for Social Research 
University of Michigan  
Ann Arbor, MI 48106 

https://ffcws.princeton.edu/
http://crcw.princeton.edu/
http://cupop.columbia.edu/


2 
 

Contents 
1. DATA APPENDAGE OVERVIEW..................................................................................................... 3 

2. FILE LAYOUT................................................................................................................................. 3 

3. VARIABLE NAMING CONVENTION .............................................................................................. 3 

4. DATA COLLECTION AND PROCESSING PROCEDURES .................................................................. 4 

4.1 SAMPLE COLLECTION ............................................................................................................ 4 

4.1.1 9-Year Follow-up ............................................................................................................. 4 

4.1.2 15-Year Follow-up........................................................................................................... 4 

4.2 TRANSFER OF SAMPLES TO THE BIOREPOSITORY/ LABORATORY ......................................... 5 

4.3 DNA PURIFICATION AND STORAGE ....................................................................................... 5 

5. BIOMARKER MEASUREMENT ...................................................................................................... 6 

5.1 Telomere Length (m5_tl, k6_tl, and k5_adjtl) ....................................................................... 6 

5.2 Additional Telomere Length Variables (*_tlmeasured, *_tlpassedqc) ................................. 7 

5.3 DNA Methylation Variables ................................................................................................... 7 

5.3.1 DNA Methylation Data Acquisition and Processing ....................................................... 7 

5.3.2 Cell Proportion Estimates ............................................................................................... 7 

5.4 Epigenetic biomarkers ........................................................................................................... 8 

5.4.1 Note about missing probes ............................................................................................ 8 

5.4.2 Individual DNA methylation biomarkers ........................................................................ 9 

5.4.3 Additional methylation biomarker variables ............................................................... 11 

6. MISSING FLAG ........................................................................................................................... 12 

7. DATA DICTONARY ...................................................................................................................... 12 

8. REFERENCES .............................................................................................................................. 14 

 
  



3 
 

 

1. DATA APPENDAGE OVERVIEW  
The Future of Families & Child Wellbeing Study (FFCWS) Biomarker Data Appendage 

contains telomere length data and DNA methylation age (DNAmAge) data for focal children 
from the FFCWS and their biological mothers. To obtain and process genetic information, saliva 
samples were provided by focal children and their biological mothers during in-home visit 
assessments at the 9-year follow-up wave. Saliva samples were collected from the focal children 
again during the 15-year follow-up wave. Several studies have shown associations between 
adversity and both telomere length (TL) and DNAmAge (e.g., [1]). The goal of collecting biologic 
information was to allow researchers to use these biomarkers to test hypotheses about the 
relationships between exposure to adverse environments and child development and health. 
Two aspects of the FFCWS design make it especially suitable for studying such interactions. First, 
because non-marital births were oversampled, children in the study are disproportionately 
exposed to the kinds of family and community stresses that have been shown to be associated 
with these biomarkers. Second, because of the study’s longitudinal design and its focus on 
family relationships and community contexts, the study provides substantial data on children’s 
cumulative exposure to stressful family and community environments. 
 In addition to telomere length, this data appendage includes variables generated from 
DNA methylation data from Illumina EPIC and 450K methylation arrays. These include 
DNAmAges generated from 13 epigenetic clocks, cell proportions derived from the DNA 
methylation data and chronological age. Additional variables indicate if a DNA sample was 
available, if it passed quality control (QC), if TL was measured and if the TL passed quality 
control. 

2. FILE LAYOUT 
 This file contains 4898 observations and 165 variables (including idnum) and is sorted by 
idnum.  

3. VARIABLE NAMING CONVENTION 
 Variable names are 5-21 characters long.  The first two characters of all variables except 
the idnum indicate the focal person (k for focal child, m for biological mother) and wave (5 for 
the 9-year follow-up and 6 for the 15-year follow-up).  For methylation clock variables, the third 
character is m for methylation and the fourth character indicates the array platform (k for 450K 
and e for EPIC). The characters after the underscore (“_”) are specific for the biomarker. The 
table below provides further examples and variable naming for TL and flag variables. 
 
Variable name structure 

Variable name Description 

Prefix  Wave  Leaf  

k 5 mk_* Illumina Infinium Human Methylation450K (450K) array 
variables 

k 5 me_* Illumina Infinium MethylationEPIC (EPIC) array variables 
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m/k 5/6 _dnaavailable Whether a participant had the DNA data 

m/k 5/6 _tl*/_adjtl Telomere length variables 

 

4. DATA COLLECTION AND PROCESSING PROCEDURES  
4.1 SAMPLE COLLECTION 

4.1.1 9-Year Follow-up 
As part of the Year 9 follow-up wave, we attempted to collect saliva samples for genetic 

analysis from all focal children and biological mothers completing the in-home visit activities. In 
cases where a biological father or non-parental figure was the primary caregiver, or the 
biological mother was not present for the in-home visit, a saliva sample was collected from only 
the child. Families completing the home visit activities received a $65 payment to the primary 
caregiver and a $30 payment to the child. No additional remuneration was provided specifically 
for the contribution of saliva samples. Ultimately, 3,403 in-home visits were conducted; 2,884 
unique child samples and 2,670 unique mother samples were collected.  

Our survey subcontractor, Westat Inc., arranged sample collection. Westat interviewers 
used the Oragene® DNA Self-Collection Kit to collect saliva samples from focal children and 
biological mothers during the Home Visit. The Self-Collection Kit is a repository for the 
collection, preservation, and transportation of saliva. The respondents were instructed to spit 
into the container until the liquid portion reached a line on the interior of the container (the 
ideal volume of saliva to be collected was 2 ml). The container was then capped. In the process 
of screwing the cap onto the container, a liquid preservative was released. The container was 
then put into a small plastic biohazard bag that contained absorbent material if the container 
were to leak. The plastic bag was then put into a mailer.  

In cases where the child had developmental or physical limitations prohibiting the 
interviewer from collecting the full sample by having the child spit into the collection kit, the 
child accessory kit was used. The child accessory kit contained a set of five saliva sponges used 
with the Oragene® self-collection kits. The saliva sponges were inserted into the child’s mouth 
and moved around the upper and lower cheek pouches on both sides of the mouth to collect 
saliva. The sponges were stored inside the containers and then sealed as described above. 
Respondents were instructed to rinse their mouth out 5 minutes prior to the saliva sample 
collection. They were also provided with a packet of sugar and instructed to use ¼ tsp. if they 
were having difficulty stimulating saliva. After completing a Home Visit, interviewers mailed the 
specimen containers (placed in the bubble wrap mailers) back to Westat. 

 

4.1.2 15-Year Follow-up 
 During the Year 15 follow-up wave, saliva was collected from the focal children (now 
teenagers) using Oragene DNA Self-Collection Kits (OGR-500) as described for the year 9 follow-
up with the following modifications. For those who did not complete a home visit, saliva 
collection kits were sent to participants via mail and after collection participants returned the 
kits to Westat via FedEx.  Participants were discouraged from eating or drinking anything within 
30 minutes prior to sample collection. Upon completion of the saliva collection, all participants 
received $20.  
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4.2 TRANSFER OF SAMPLES TO THE BIOREPOSITORY/ LABORATORY 
As Westat received specimen containers from the field, they were inspected to make 

sure that samples did not contain personal identifiers and placed in a shipment box with other 
received collection kits. Until they were mailed, these boxes were secured in the locked field 
room and maintained at room temperature. On an approximately monthly basis during the field 
period, Westat shipped boxes of specimen containers at room temperature to the laboratory of 
Dr. Daniel Notterman, Co-Principal Investigator of the FFCWS, in the Department of Molecular 
Biology at Princeton University. A transmittal form containing the IDs of the enclosed containers 
was emailed to lab staff. The lab confirmed receipt of the boxes with Westat. 

Saliva collection kits were shipped monthly from October 2007 through May 2010 and 
from April 2014 through March 2017, respectively, for the 9- and 15- year follow-ups to the 
Notterman laboratory at Princeton by FedEx from Westat. Upon receipt of the shipments, lab 
technicians used a barcode reader to inventory the individual samples. These data were 
imported into a Microsoft Access database where a full inventory of receipted samples is kept. 
 

4.3 DNA PURIFICATION AND STORAGE 
Extraction was completed 1 to 2 weeks after receipt of samples from Westat. DNA was 

extracted from the entire sample using the Oragene® prepIT•L2P Laboratory Protocol for 
Manual Purification of DNA (DNA Genotek). Briefly, when samples were ready to be processed, 
they were incubated at 50°C in a water incubator for a minimum of 1 hour. The mixed 
Oragene®-DNA/saliva sample was transferred to a 15 ml centrifuge tube. A 1/25 ul volume 

portion of Oragene®- prepIT•L2P solution was added to the microcentrifuge tube and mixed by 
vortexing for a few seconds. The sample was incubated on ice for 10 minutes, then centrifuged 
at room temperature for 10 minutes at 3,500 rpm. The clear supernatant was carefully 
transferred with a pipet into a fresh centrifuge tube, avoiding the precipitate at the bottom of 
the tube. A volume of room temperature 100% ethanol equal to the volume of the supernatant 
was added to the supernatant and gently mixed by inversion 10 times. The sample was allowed 
to stand for 10 minutes at room air to allow the DNA to fully precipitate. The tube was then 
centrifuged for 10 minutes at room temperature at 3,500 rpm. The supernatant was decanted 
and discarded, taking care to avoid disturbing the DNA pellet. An ethanol wash consisting of 1 
ml of 70% ethanol was added to the tube without disturbing the pellet. After standing at room 
temperature for 1 minute, the tube was gently swirled to completely remove the ethanol, taking 
care not to disturb the pellet. The pellet was air dried after which the DNA was rehydrated by 
adding 0.5 to 1.0 ml of TE solution (10 mM Tris-HCl, 1 mM EDTA, pH 7.5), vortexing the sample 
for 30 seconds, incubating it at room temperature, and transferring the rehydrated DNA to 3 x 
1.7 ml microcentrifuge tubes for storage (2 tubes were stored at -80°C and one in the lab 
refrigerator at 4°C). DNA concentration was determined using the Quant-iT PicoGreen dsDNA 
Assay Kit (ThermoFisher). 
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5. BIOMARKER MEASUREMENT 
5.1 Telomere Length (m5_tl, k6_tl, and k5_adjtl) 

Telomere length (TL) was determined using a quantitative real-time polymerase chain 
reaction (qPCR) assay that incorporates a double-stranded oligomer standard to permit the 
measurement of absolute TL (in kilobases (kb) per telomere as previously described [1–3]). 
More specifically, an 84-mer double stranded oligonucleotide containing the sequence TTAGGG 
was used to create a standard curve for telomere quantity and a 79-mer double stranded 
oligonucleotide containing sequence from the 36B4 gene was used to create a standard curve 
for the reference gene. The PCR efficiency of each plate was between 90-110% and the R2 of the 
standard curve was greater than 0.997.  TL was calculated by dividing the telomere quantity by 
the reference gene quantity. This was then divided by 92 to determine TL/telomere. For each 
primer pair (telomere or 36B4), samples were measured in triplicate, and the results were 
averaged. Distribution of samples in the 96-well plates was randomized, and each plate 
contained repeats from previous runs to detect and limit potential batch effects. To mitigate 
batch effects, reference DNA from a cell line with a relatively short telomere (3C167b) and a 
fibroblast cell line after stable integration of the hTERT gene (cell line NHFpreT) were included in 
each run (both cell lines were a gift from Dr Yuanjun Zhao of Pennsylvania State University; 
[4,5]). In our laboratory, 3C167b has a mean TL of 3.1 kb, whereas NHFpreT has a mean TL of 
16.8 kb. Reference DNA was harvested at a single time, aliquoted, and frozen. The reference cell 
line telomere and 36B4 quantities were used to normalize variation between runs. The 
geometric mean of the two cell line telomere quantities from each run was divided by the 
geometric mean of the two cell line telomere quantities from all the runs to create a 
normalization factor for each run. Each sample telomere quantity was divided by its run’s 
normalization factor. This procedure was repeated for the 36B4 quantities. The normalized Tel 
quantities were divided by the normalized 36B4 quantities to generate telomere length. This 
was then divided by 92.  

A replicate sample (DNA from volunteers) was included in triplicate in all plates, and the 
results of this measurement were used to compute an inter-run coefficient of variation, which 
was <11% across all runs. We estimated inter-assay intraclass correlation coefficients (ICCs) to 
estimate the consistency and correlation of TL following the suggestion of recent work on TL 
reliability [6–8]. We estimated a two-way, single measurement, absolute agreement, random 
effects model, known as ICC(A,1) and for average measurements ICC(A,k) in McGraw and 
Wong’s terminology [9]. In total, there were 242 batches run for Year 9 and 126 batches run for 
Year 15. We calculated the ICC at both Year 9 (ICC (A,1) = 0.91 (95 percent CI1 0.82–1.0); 
ICC(A,k) = 0.99 (95 percent CI 0.99–1.0)) and Year 15 (ICC(A,1) = 0.95 (95 percent CI 0.84–1.0); 
ICC(A,k) = 0.99 (95 percent CI 0.99–1.0)). 

The Year 9 and Year 15 samples were collected approximately 6 years apart. To minimize 
batch effects and ensure comparability, we re-ran 228 samples from the Year 9 collection using 
the same reagents and conditions as the Year 15 collection. The difference in average TL 
between the original and repeat samples was not statistically significant. We estimated a linear 

 
1 CI = Confidence Interval 
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relationship between the repeat and original measurements using this sample and adjusted the 
overall original Year 9 TL data by that correction factor. 

It is recommended that users perform a natural log transformation of the data prior to 
statistical analysis to deal with outliers and correct for the positive skew of the data. 
 

5.2 Additional Telomere Length Variables (*_tlmeasured, *_tlpassedqc) 
 In addition to telomere length, there are binary variables that indicate whether TL was 
measured (1=yes, 0=no), and if the measurement passed QC or if it was trimmed as indicated 
above (1=passed QC, 0=did not pass QC/trimmed). 
 

5.3 DNA Methylation Variables 

5.3.1 DNA Methylation Data Acquisition and Processing 
 Approximately 500 ng of genomic DNA (quantified using the Quant-iT Picogreen ds DNA 
Assay Kit as described above) was subjected to bisulfite conversion using the EZ-96 DNA 
Methylation Kit (Zymo Research) and analyzed with the Illumina Infinium Human 
Methylation450K (450K) or Illumina Infinium MethylationEPIC (EPIC) array according to the 
manufacturer’s protocol. Bisulfite conversion and array processing was performed by the 
Pennsylvania State College of Medicine Genome Sciences Core facility2. Age 9 and 15 samples 
were run at the same time to minimize technical variation.  Otherwise, samples were 
randomized. 
 The red and green image pairs were read into R [10]. QC of the methylation data was 
initially performed with EWAStools [11]. Probes were removed if the detection value was 
greater than 0.01 or 0.05 for the 450K or EPIC arrays, respectively.  Probes were also removed if 
the number of methylated or unmethylated bead count was fewer than four.  Probes were also 
removed if they were identified by the ENmix function QCinfo using the default parameters 
[12]. Samples were removed if they had outlier methylation or bisulfite conversion values, as 
identified by the ENmix QC function or if the sex predicted from the methylation data differed 
from the recorded sex. If the sequential samples from the same individual exhibited genetic 
discordance between visits the sample was flagged (see DNA_flag above). The ENmix 
preprocessENmix and rcp functions were used to normalize dye bias, apply background 
correction and adjust for probe-type bias [12,13].  
 

5.3.2 Cell Proportion Estimates 
Four different methods/reference panels were used to estimate cell proportions from 

the methylation data. 
 
EpiDISH Estimates (*_epi, *_fib, *_ic) 

 
2 The Genome Sciences Core (RRID:SCR_021123) services and instruments used in this project were funded, in part, by the Pennsylvania State University 

College of Medicine via the Office of the Vice Dean of Research and Graduate Students and the Pennsylvania Department of Health using Tobacco 
Settlement Funds (CURE). The content is solely the responsibility of the authors and does not necessarily represent the official views of the University or 
College of Medicine. The Pennsylvania Department of Health specifically disclaims responsibility for any analyses, interpretations or conclusions. 



8 
 

 EpiDISH infers the proportions of a priori known cell-types present in a sample 
representing such cell-types [14]. The variables ending in epi, fib, and ic represent the estimated 
proportions of epithelial cells, fibroblasts, and immune cells, respectively. 
 
Child Saliva Panel Estimates (*_epithelial, *_immune) 
 Derived using the Middleton reference panel estimates for saliva in the EWAStools 
package [11,15].  The panel was created by collecting saliva from 22 children, ranging in age 
from seven to 16 years of age, sorting each sample into two fractions: immune and epithelial 
cells.  DNA was then isolated, and DNA methylation analyzed on EPIC arrays. Variables represent 
the proportion of epithelial (*_epithelial) and immune (*_immune) cells. 
 
Blood Immune Cell Panel (*_gr, *_nk, *_b, *_cd4, *_cd8, *_mo) 
 Derived using the Salas reference panel estimates for blood immune cell proportions in 
EWAStools [11,16]. Variables represent the proportion of granulocytes (*_gr), natural killer cells 
(*_nk), B cells (*_b), CD4 cells (*_cd4), CD8 cells (*_cd8) and monocyles (*_mo). 
 
Plasma blasts, CD8+ CD28- CD45RA- T cells, naïve CD8 T cells (Horvath method [17]) 
 Variables represent estimated abundance measures of plasma blasts (*_plasmablast), 
CD8+ CD28- CD45RA- T cells (*_cd8pcd28ncd45ran) and naïve CD8 T cells, which are 
CD45RA+CCR7+ T cells (*_cd8_naive).  These should not be interpreted as counts or percentages 
but rather as ordinal abundance measures. Do not convert to proportions. Negative values 
indicate very low values. The author (S. Horvath) of the method would not set a negative value 
to zero but would not object if one does. 
  

5.4 Epigenetic biomarkers 
Before documenting each DNA methylation biomarker below, it is important to note that 

slight variations in the algorithm code, imputation of missing values, and even sample 
processing used by different packages or websites can result in highly correlated (>0.97), but 
slightly different measures of the same epigenetic biomarker. For example, some packages may 
impute missing CpGs while others omit them completely, and some packages include the 
intercept while others do not. Thus, although the overall mean might be slightly different, the 
associations with other variables should be similar. Data users should be cautious about 
interpreting mean differences between versions of the same epigenetic biomarker for these 
reasons. 
 

5.4.1 Note about missing probes 
Subsets of probes used in the various epigenetic biomarker algorithms were missing due 

to QC or array platform. Some of the clocks represented in this data release impute these 
missing probes using a “Gold Standard.” The number of probes used in each clock (Probe 
Number), proportion of missing probes for each array platform, and the “Gold Standard” used 
for imputation (if performed) were: 
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 Clock* 450K EPIC Probe Number Imputation 

1 Horvath 0.023 0.102 353 Horvath27K 

2 Hannum 0.014 0.169 71 GrimCpG 

3 PedBE 0.043 0.074 94 None 

4 SkinBlood 0.043 0.054 391 None 

5 PhenoAge 0.023 0.045 513 None 

6 Grim 0.09 0.161 30084 GrimCpG 

7 PoAm38 0.109 0.109 46 Dunedin 

8 PoAm45 0.046 0.069 173 Dunedin 

9 PC 0.012 0.076 78464 Hannum2013 

*Please see sections below for details regarding each epigenetic biomarker. 
  

5.4.2 Individual DNA methylation biomarkers 
Horvath Pan-Tissue Estimator (*horvath) 

This clock, developed in 2013 by Steve Horvath, was trained and validated via penalized 
regression using 82 Illumina DNA methylation array datasets (Infinium27K and Infinium450K) 
which included 8,000 samples from of more than 30 different tissue and cell types collected 
from cord blood, children, and adults. Through the use of a transformed version of 
chronological age as an outcome measure, it defined a clock based on 353 CpGs to predict 
epigenetic age across a broad spectrum of human cell types and tissues. [17].   
 
Hannum (*hannum) 
 This clock was developed by Gregory Hannum, Trey Ideker, Kang Zhang and colleagues 
[18] using Illumina 450K data which analyzed DNA methylation of blood samples from 656 
human adults ranging in age from  19 to 101. The aging model included gender, BMI, diabetes 
status, ethnicity, and batch as covariates and chronological age as the outcome measure. 
  
The Skin and Blood Clock (*skinblood) 
 Realizing that existing epigenetic clocks did not perform well with ex vivo samples, Steve 
Horvath and colleagues developed the skin and blood epigenetic clock in 2018 to improve 
epigenetic age estimates of human fibroblasts, keratinocytes, buccal cells, endothelial cells, 
skin, and blood samples [19].  Illumina 450K and EPIC array data from buccal, epithelial, 
fibroblast, skin, endothelial, keratinocyte, lymphoblast, dermis and epidermis cells, as well as 
whole blood, cord blood and saliva were used to create this estimator based upon 391 CpGs. 
Despite sharing 45 and 60 CpGs with the Hannum [18] and original Horvath [17] clocks, the skin 
and blood epigenetic clock estimates only moderately correlate with those of these earlier 
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clocks.  The clock was reported to outperform existing DNA methylation-based biomarkers to 
estimate the chronological ages of human doners of microvascular endothelial cells, skin cells, 
fibroblasts, keratinocytes, coronary artery endothelial cells, lymphoblastoid cells, blood, and 
saliva samples. This clock also shows strong age correlations in sorted neurons, glia, brain, liver 
and bone samples [19]. 
 
The Pediatric-Buccal-Epigenetic (PedBE) Clock (*pedbe) 
 This epigenetic clock was developed by Lisa McEwen, Steve Horvath, and Michael Kobor 
to improve the estimated epigenetic age derived from pediatric buccal sample data [20].  The 
clock used a training set consisting of datasets from 1032 Illumina 450K or EPIC arrays of buccal 
cell genomic DNA from individuals ranging from 0.17 to 19.47 years of age. The PedBE clock is 
comprised of weighted DNAm values at 94 CpG sites.  Estimated DNAmAge values using this 
clock are reported to be highly correlative with those values generated from Horvath’s pan 
tissue clock, but had a lower test error, reported as the median absolute difference between 
chronological age and pediatric DNAm age [20].  This clock was also predictive of age in data 
generated from saliva samples, but with increased variability, possibly due to the saliva dataset 
age being reported in years instead of days. 
 
DNAmPhenoAge (*phenoage) 
 Developed by Morgan Levine, Steve Horvath and colleagues [21], this epigenetic clock 
was trained using a novel two-step method to generate a lifespan predictor. The first step used a 
Cox penalized regression model in which the hazard of mortality was regressed on clinical 
markers (albumin, creatinine, serum glucose, C-reactive protein, lymphocyte percent, mean cell 
volume, red blood cell distribution width, alkaline phosphatase, and white blood cell count), 
and chronological age to predict phenotypic age. Elastic net regression where the phenotypic 
age was predicted by blood DNA methylation data was then used to identify the 513 CpGs 
comprising the DNAm PhenoAge measure. 
 
DNAm GrimAge (*grim) 
 The DNAm GrimAge epigenetic clock was developed by Ake Lu, Steve Horvath and 
colleagues.  The authors used Framingham Heart Study data, including DNA methylation data 
from the HumanMethylation450K BeadChip array, from 2356 individuals composed of 888 
pedigrees to construct a mortality risk estimator from DNA methylation data [22,23].  First, 
estimators for twelve plasma proteins and smoking pack years based on blood methylation data 
were developed.  These DNAm estimators, together with chronological age and sex were then 
regressed on time-to-death (due to all-cause mortality) using an elastic net Cox regression 
model which selected the following covariates: seven DNAm-based surrogate plasma protein 
markers (adrenomedullin (*_adm), beta-2-microglobulim (*_B2M), cystatin C (*_Cystatin_C), 
growth/differentiation factor 15 (GDF-15; *_GDF_15), leptin (*_leptin), plasminogen activator 
inhibitor type 1 (PAI-1; *_pai_1), tissue inhibitor metalloproteinases 1 (TIMP-1; *_TIMP_1)), 
DNAm pack-years (*_PACKYRS), chronological age, and sex. The resulting value was transformed 
to be in the unit of years to generate DNAm GrimAge [23].  AgeAccelGrim is the raw residual 
resulting from regressing observed GrimAge on chronological age [23]. The authors also 
examined the inclusion of imputed blood cell composition in their multivariate Cox regression 
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models and demonstrated that AgeAccelGrim remained highly predictive of lifespan and time-
to-coronary heart disease.  DNAm biomarkers remained predictive of lifespan and time-to-CHD 
after adjusting for blood cell counts.  With the exception of leptin, where inclusion of blood cell 
counts increased significance, the adjustment generally reduced significance.  
 
Dunedin Pace of Aging Methylation (DunedinPoAm; *poam38) 
 The DunedinPoAm biomarker differs from previous DNA methylation biomarkers in that 
it uses DNA methylation at a single time point to predict aging-related decline [24].  Individuals 
age at different rates. The development of this biomarker by Daniel Belsky and colleagues builds 
upon their previous work that defined Pace of Aging, which incorporated change in participants 
in the Dunedin Study over a 12 year period for 16 biomarkers (glycated hemoglobin, forced 
expiratory volume in one second (FEV1), forced vital capacity ratio (FEV1/FVC), blood pressure 
(mean arterial pressure), total cholesterol, leukocyte telomere length, blood urea nitrogen 
(BUN), cardiorespiratory fitness (VO2Max), waist-hip ratio, body mass index, lipoprotein(a), 
triglycerides, high density lipoprotein, apolipoprotein B100/A1 ratio, white blood cell count and 
periodontal disease).  Additionally, the measure incorporated change in high sensitivity C-
reactive protein and creatine clearance over a six-year period [25].  This Pace of Aging measure 
was used in elastic-net regression to create the DunedinPoAm biomarker (*_PoAm38). 
 
Dunedin Pace of Aging Calculated from the Epigenome (DunedinPACE; *poam45) 
 This biomarker is an updated version of DunedinPoAm which takes into account all 
previous measures as well as an additional time point (to extend the time period to 20 years), 
an additional measure (estimated glomerular filtration rate (eGFR)), and improved probe QC 
[26]. 
 
Principal Components of Epigenetic Biomarkers (*_pc*) 
 These variables have been adjusted for technical variations as described in Higgens-Chen 
et al. [27]. Please see below for correlation between the original variable and PC adjusted 
variable. 
 

Original Variable PC adjusted variable 

*_horvath *_pchorvath1 

*_skinblood *_pchorvath2 

*_hannum *_pchannum 

*_phenoage *_pcphenoage 

*_grim *_pcgrim 

 

5.4.3 Additional methylation biomarker variables 
Bio4HAStatic (*_bio4hastatic) 
 This corresponds to the BioAge4HAStatic measure that extends the predicted age 
measures based on the 71 CpGs used in the Hannum clock [18] using four epigenetic input 
variables as described by Dr. Horvath [17,28].  
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Chronological age (*_age) 
 Chronological age derived from sample receipt age. Please use this instead of other age 
variables in the public dataset when working with the biomarker data. 
 
Batch (*_batch) 
 Indicates the batch in which the sample was processed (bisulfite conversion and array). 

6. MISSING FLAG  
*_dnaavailable:  The flag variable indicates the whether a participant provided a sample and if 
DNA was successfully extracted from that sample, as well as the missing values in the DNA data. 
More specifically, the following codes are used.  
 1 Yes 
 A participant provided a sample and DNA was successfully extracted from that sample. 
 0 No 

A participant did not provide a sample or DNA was not successfully extracted from that 
sample. 
-9 Not in wave   
Family did not participant in this assessment.  
-3 Missing  
Saliva sample failed quality control.  

7. DATA DICTONARY 
Note: Variable names listed in the data dictionary exclude the first two characters indicating the 
respondent and wave. “mk/me” as the third and fourth characters are explained in the Variable 
Naming Convention section. 

Variable  Description 

*_tl Telomere length data 

*_adjtl Adjusted telomere length data 

*_tlmeasured The telomere length was measured. 

*_tlpassedqc TL measurement passed QC or trimmed to pass 
QC. 

*_dnaavailable Whether a participant had the DNA data   

*mk_age\*me_age Chronological age derived from sample receipt 
age 

*mk_batch\*me_batch The batch in which the sample was processed 
(bisulfite conversion and array) 

*mk_horvath\*me_horvath Horvath pan-tissue estimator 

*mk_skinblood\*me_skinblood The skin and blood clock 

*mk_pedbe\*me_pedbe The pediatric-buccal-epigenetic clock 

*mk_phenoage\*me_phenoage DNAm PhenoAge 

*mk_poam38\*me_poam38 Dunedin Pace of Aging Methylation 

*mk_poam45\*me_poam45 Dunedin Pace of Aging Calculated from the 
Epigenome 
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*mk_plasmablast\*me_plasmablast Estimated abundance measures of plasma blasts 

*mk_cd8pcd28ncd45ran\*me_cd8pcd28n
cd45ran 

Estimated abundance measures of CD8+ CD28- 

CD45RA- T cells 

*mk_cd8_naive\*me_cd8_naive Estimated abundance measures of naïve CD8 T 
cells, which are CD45RA+CCR7+ T cells 

*mk_hannum\*me_hannum Hannum  

*mk_grim\*me_grim DNAm GrimAge 

*mk_gdf_15\*me_gdf_15 Growth/differentiation factor 15  

*mk_b2m\*me_b2m Beta-2-microglobulim 

*mk_cystatin_c\*me_cystatin_c Cystatin C 

*mk_timp_1\*me_timp_1 Tissue inhibitor metalloproteinases 1 

*mk_adm\*me_adm  Adrenomedullin 

*mk_pai_1\*me_pai_1 Plasminogen activator inhibitor type 1 

*mk_leptin\*me_leptin Leptin 

*mk_packyrs\*me_packyrs DNAm pack-years 

*mk_bio4hastatic\*me_bio4hastatic Weighted Hannum clock 

*mk_pchorvath1\*me_pchorvath1 Principal components adjusted horvath pan-
tissue estimator 

*mk_pchorvath2\*me_pchorvath2 Principal components adjusted skin and blood 
clock 

*mk_pchannum\*me_pchannum Principal components adjusted hannum 

*mk_pcpheno\*me_pcpheno Principal components adjusted DNAm 
PhenoAge 

*mk_pcgrim\*me_pcgrim Principal components adjusted DNAm GrimAge 

*mk_immune\*me_immune The proportion of immune cells on child saliva 
panel estimates 

*mk_epithelial\*me_epithelial The proportion of epithelial cells on child saliva 
panel estimates 

*mk_epi\*me_epi  The proportion of epithelial cells on epiDISH 
estimates 

*mk_fib\*me_fib The proportion of fibroblasts on epiDISH 
estimates 

*mk_ic\*me_ic The proportion of immune cells on epiDISH 
estimates 

*mk_gr\*me_gr The proportion of granulocytes on blood 
immune cell panel 

*mk_nk\*me_nk The proportion of natural killer cells on blood 
immune cell panel 

*mk_b\*me_b The proportion of B cells on blood immune cell 
panel 

*mk_cd4\*me_cd4 The proportion of CD4 cells on blood immune 
cell panel 
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*mk_cd8\*me_cd8 The proportion of CD8 cells on blood immune 
cell panel 

*mk_mo\*me_mo The proportion of monocyles on blood immune 
cell panel 
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